Algorithm Roadmap ================= This page tracks the implementation status of algorithms in lostml. Implemented Algorithms ✅ -------------------------- Linear Models ~~~~~~~~~~~~~ - ✅ **Linear Regression** - Basic linear regression using gradient descent - ✅ **Ridge Regression** - Linear regression with L2 regularization - ✅ **Lasso Regression** - Linear regression with L1 regularization (feature selection) - ✅ **Elastic Net** - Combines L1 and L2 regularization Classification ~~~~~~~~~~~~~ - ✅ **Logistic Regression** - Binary classification using sigmoid function - ✅ **K-Nearest Neighbors (KNN)** - Instance-based classification with distance metrics Tree-Based Models ~~~~~~~~~~~~~~~~~ - ✅ **Decision Tree** - Classification and regression using recursive splitting - *Status*: Implemented - *Use Cases*: Interpretable models, feature importance, non-linear relationships - *Features*: Supports both Gini (classification) and MSE (regression) criteria - ✅ **Random Forest** - Ensemble of decision trees with bootstrap aggregating - *Status*: Implemented - *Use Cases*: General-purpose classification and regression, handles overfitting well - *Features*: Bootstrap sampling, random feature selection, majority voting (classification), averaging (regression) Utilities ~~~~~~~~~ - ✅ **Distance Metrics** - Euclidean and Manhattan distance functions Planned Algorithms 🚧 --------------------- Unsupervised Learning ~~~~~~~~~~~~~~~~~~~~~ - ⏳ **K-Means Clustering** - Partition data into k clusters - *Status*: Planned - *Priority*: High - *Use Cases*: Customer segmentation, data exploration, pattern discovery - ⏳ **PCA (Principal Component Analysis)** - Dimensionality reduction - *Status*: Planned - *Priority*: High - *Use Cases*: Feature reduction, visualization, noise reduction Additional Algorithms ~~~~~~~~~~~~~~~~~~~~~ - ⏳ **Naive Bayes** - Probabilistic classifier - *Status*: Planned - *Priority*: Medium - *Use Cases*: Text classification, spam detection, fast classification - ⏳ **Support Vector Machine (SVM)** - Maximum margin classifier - *Status*: Planned - *Priority*: Medium - *Use Cases*: Classification with clear margins, non-linear data (with kernels) Implementation Status ---------------------- **Current Progress**: 8/12 algorithms implemented (67%) **Next Up**: K-Means → PCA → Naive Bayes