K-Nearest Neighbors =================== K-Nearest Neighbors (KNN) is an instance-based learning algorithm that makes predictions based on the k nearest training examples. KNN Classifier -------------- .. autoclass:: lostml.neighbors.knn.KNN :members: :undoc-members: :show-inheritance: :special-members: __init__ Examples -------- Basic Classification ~~~~~~~~~~~~~~~~~~~~ .. code-block:: python from lostml.neighbors import KNN import numpy as np X_train = np.array([[1, 2], [2, 3], [3, 4], [5, 6]]) y_train = np.array([0, 0, 1, 1]) knn = KNN(n_neighbors=3) knn.fit(X_train, y_train) predictions = knn.predict(np.array([[2.5, 3.5]])) Using Different Metrics ~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python # Euclidean distance (default) knn = KNN(n_neighbors=5, metric='euclidean') # Manhattan distance knn = KNN(n_neighbors=5, metric='manhattan')